Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications.

Identifieur interne : 000530 ( Main/Exploration ); précédent : 000529; suivant : 000531

Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications.

Auteurs : Wei-Yi Ong [Singapour] ; Mei-Lin Go [Singapour] ; De-Yun Wang [Singapour] ; Irwin Kee-Mun Cheah [Singapour] ; Barry Halliwell [Singapour]

Source :

RBID : pubmed:32897518

Descripteurs français

English descriptors

Abstract

The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs such as the lungs and blood vessels, but also the central nervous system (CNS)-as seen by effects on smell, taste, seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia. COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS. Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs. (A) They are very lipophilic, which enhances their ability to cross the blood-brain barrier (BBB). Hence, they have the potential to act not only in the periphery but also in the CNS, and could be a useful addition to our limited armamentarium against the SARS-CoV-2 virus. (B) They are non-selective inhibitors of phospholipase A2 isoforms, including cytosolic phospholipase A2 (cPLA2). The latter is not only activated by cytokines but itself generates arachidonic acid, which is metabolized by cyclooxygenase (COX) to pro-inflammatory eicosanoids. Free radicals are produced in this process, which can lead to oxidative damage to the CNS. There are at least 4 ways that antimalarials could be useful in combating COVID-19. (1) They inhibit PLA2. (2) They are basic molecules capable of affecting the pH of lysosomes and inhibiting the activity of lysosomal enzymes. (3) They may affect the expression and Fe2+/H+ symporter activity of iron transporters such as divalent metal transporter 1 (DMT1), hence reducing iron accumulation in tissues and iron-catalysed free radical formation. (4) They could affect viral replication. The latter may be related to their effect on inhibition of PLA2 isoforms. Inhibition of cPLA2 impairs an early step of coronavirus replication in cell culture. In addition, a secretory PLA2 (sPLA2) isoform, PLA2G2D, has been shown to be essential for the lethality of SARS-CoV in mice. It is important to take note of what ongoing clinical trials on chloroquine and hydroxychloroquine can eventually tell us about the use of antimalarials and other anti-inflammatory agents, not only for the treatment of COVID-19, but also for neurovascular disorders such as stroke and vascular dementia.

DOI: 10.1007/s12035-020-02093-z
PubMed: 32897518
PubMed Central: PMC7477069


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications.</title>
<author>
<name sortKey="Ong, Wei Yi" sort="Ong, Wei Yi" uniqKey="Ong W" first="Wei-Yi" last="Ong">Wei-Yi Ong</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore. antongwy@nus.edu.sg.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore. antongwy@nus.edu.sg.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Go, Mei Lin" sort="Go, Mei Lin" uniqKey="Go M" first="Mei-Lin" last="Go">Mei-Lin Go</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wang, De Yun" sort="Wang, De Yun" uniqKey="Wang D" first="De-Yun" last="Wang">De-Yun Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cheah, Irwin Kee Mun" sort="Cheah, Irwin Kee Mun" uniqKey="Cheah I" first="Irwin Kee-Mun" last="Cheah">Irwin Kee-Mun Cheah</name>
<affiliation wicri:level="4">
<nlm:affiliation>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Halliwell, Barry" sort="Halliwell, Barry" uniqKey="Halliwell B" first="Barry" last="Halliwell">Barry Halliwell</name>
<affiliation wicri:level="4">
<nlm:affiliation>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore. bchbh@nus.edu.sg.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore. bchbh@nus.edu.sg.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:32897518</idno>
<idno type="pmid">32897518</idno>
<idno type="doi">10.1007/s12035-020-02093-z</idno>
<idno type="pmc">PMC7477069</idno>
<idno type="wicri:Area/Main/Corpus">000C67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C67</idno>
<idno type="wicri:Area/Main/Curation">000C67</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C67</idno>
<idno type="wicri:Area/Main/Exploration">000C67</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications.</title>
<author>
<name sortKey="Ong, Wei Yi" sort="Ong, Wei Yi" uniqKey="Ong W" first="Wei-Yi" last="Ong">Wei-Yi Ong</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore. antongwy@nus.edu.sg.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore. antongwy@nus.edu.sg.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Go, Mei Lin" sort="Go, Mei Lin" uniqKey="Go M" first="Mei-Lin" last="Go">Mei-Lin Go</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wang, De Yun" sort="Wang, De Yun" uniqKey="Wang D" first="De-Yun" last="Wang">De-Yun Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cheah, Irwin Kee Mun" sort="Cheah, Irwin Kee Mun" uniqKey="Cheah I" first="Irwin Kee-Mun" last="Cheah">Irwin Kee-Mun Cheah</name>
<affiliation wicri:level="4">
<nlm:affiliation>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
<author>
<name sortKey="Halliwell, Barry" sort="Halliwell, Barry" uniqKey="Halliwell B" first="Barry" last="Halliwell">Barry Halliwell</name>
<affiliation wicri:level="4">
<nlm:affiliation>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore. bchbh@nus.edu.sg.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore. bchbh@nus.edu.sg.</nlm:affiliation>
<country xml:lang="fr">Singapour</country>
<wicri:regionArea>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260</wicri:regionArea>
<orgName type="university">Université nationale de Singapour</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular neurobiology</title>
<idno type="eISSN">1559-1182</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antimalarials (metabolism)</term>
<term>Antimalarials (therapeutic use)</term>
<term>Blood-Brain Barrier (drug effects)</term>
<term>Blood-Brain Barrier (metabolism)</term>
<term>COVID-19 (complications)</term>
<term>COVID-19 (drug therapy)</term>
<term>COVID-19 (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Nervous System Diseases (drug therapy)</term>
<term>Nervous System Diseases (etiology)</term>
<term>Nervous System Diseases (metabolism)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>Treatment Outcome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antipaludiques (métabolisme)</term>
<term>Antipaludiques (usage thérapeutique)</term>
<term>Barrière hémato-encéphalique (effets des médicaments et des substances chimiques)</term>
<term>Barrière hémato-encéphalique (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Maladies du système nerveux (métabolisme)</term>
<term>Maladies du système nerveux (traitement médicamenteux)</term>
<term>Maladies du système nerveux (étiologie)</term>
<term>Résultat thérapeutique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antimalarials</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Antimalarials</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>COVID-19</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Blood-Brain Barrier</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>COVID-19</term>
<term>Nervous System Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Barrière hémato-encéphalique</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Nervous System Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Blood-Brain Barrier</term>
<term>COVID-19</term>
<term>Nervous System Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antipaludiques</term>
<term>Barrière hémato-encéphalique</term>
<term>Maladies du système nerveux</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Maladies du système nerveux</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Antipaludiques</term>
</keywords>
<keywords scheme="MESH" qualifier="étiologie" xml:lang="fr">
<term>Maladies du système nerveux</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>SARS-CoV-2</term>
<term>Treatment Outcome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Résultat thérapeutique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs such as the lungs and blood vessels, but also the central nervous system (CNS)-as seen by effects on smell, taste, seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia. COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS. Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs. (A) They are very lipophilic, which enhances their ability to cross the blood-brain barrier (BBB). Hence, they have the potential to act not only in the periphery but also in the CNS, and could be a useful addition to our limited armamentarium against the SARS-CoV-2 virus. (B) They are non-selective inhibitors of phospholipase A
<sub>2</sub>
isoforms, including cytosolic phospholipase A
<sub>2</sub>
(cPLA
<sub>2</sub>
). The latter is not only activated by cytokines but itself generates arachidonic acid, which is metabolized by cyclooxygenase (COX) to pro-inflammatory eicosanoids. Free radicals are produced in this process, which can lead to oxidative damage to the CNS. There are at least 4 ways that antimalarials could be useful in combating COVID-19. (1) They inhibit PLA
<sub>2.</sub>
(2) They are basic molecules capable of affecting the pH of lysosomes and inhibiting the activity of lysosomal enzymes. (3) They may affect the expression and Fe
<sup>2+</sup>
/H
<sup>+</sup>
symporter activity of iron transporters such as divalent metal transporter 1 (DMT1), hence reducing iron accumulation in tissues and iron-catalysed free radical formation. (4) They could affect viral replication. The latter may be related to their effect on inhibition of PLA
<sub>2</sub>
isoforms. Inhibition of cPLA
<sub>2</sub>
impairs an early step of coronavirus replication in cell culture. In addition, a secretory PLA
<sub>2</sub>
(sPLA
<sub>2</sub>
) isoform, PLA2G2D, has been shown to be essential for the lethality of SARS-CoV in mice. It is important to take note of what ongoing clinical trials on chloroquine and hydroxychloroquine can eventually tell us about the use of antimalarials and other anti-inflammatory agents, not only for the treatment of COVID-19, but also for neurovascular disorders such as stroke and vascular dementia.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32897518</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>12</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>04</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-1182</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>58</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2021</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Molecular neurobiology</Title>
<ISOAbbreviation>Mol Neurobiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications.</ArticleTitle>
<Pagination>
<MedlinePgn>106-117</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12035-020-02093-z</ELocationID>
<Abstract>
<AbstractText>The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs such as the lungs and blood vessels, but also the central nervous system (CNS)-as seen by effects on smell, taste, seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia. COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS. Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs. (A) They are very lipophilic, which enhances their ability to cross the blood-brain barrier (BBB). Hence, they have the potential to act not only in the periphery but also in the CNS, and could be a useful addition to our limited armamentarium against the SARS-CoV-2 virus. (B) They are non-selective inhibitors of phospholipase A
<sub>2</sub>
isoforms, including cytosolic phospholipase A
<sub>2</sub>
(cPLA
<sub>2</sub>
). The latter is not only activated by cytokines but itself generates arachidonic acid, which is metabolized by cyclooxygenase (COX) to pro-inflammatory eicosanoids. Free radicals are produced in this process, which can lead to oxidative damage to the CNS. There are at least 4 ways that antimalarials could be useful in combating COVID-19. (1) They inhibit PLA
<sub>2.</sub>
(2) They are basic molecules capable of affecting the pH of lysosomes and inhibiting the activity of lysosomal enzymes. (3) They may affect the expression and Fe
<sup>2+</sup>
/H
<sup>+</sup>
symporter activity of iron transporters such as divalent metal transporter 1 (DMT1), hence reducing iron accumulation in tissues and iron-catalysed free radical formation. (4) They could affect viral replication. The latter may be related to their effect on inhibition of PLA
<sub>2</sub>
isoforms. Inhibition of cPLA
<sub>2</sub>
impairs an early step of coronavirus replication in cell culture. In addition, a secretory PLA
<sub>2</sub>
(sPLA
<sub>2</sub>
) isoform, PLA2G2D, has been shown to be essential for the lethality of SARS-CoV in mice. It is important to take note of what ongoing clinical trials on chloroquine and hydroxychloroquine can eventually tell us about the use of antimalarials and other anti-inflammatory agents, not only for the treatment of COVID-19, but also for neurovascular disorders such as stroke and vascular dementia.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ong</LastName>
<ForeName>Wei-Yi</ForeName>
<Initials>WY</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-9756-7772</Identifier>
<AffiliationInfo>
<Affiliation>Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore. antongwy@nus.edu.sg.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore. antongwy@nus.edu.sg.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Go</LastName>
<ForeName>Mei-Lin</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>De-Yun</ForeName>
<Initials>DY</Initials>
<AffiliationInfo>
<Affiliation>Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheah</LastName>
<ForeName>Irwin Kee-Mun</ForeName>
<Initials>IK</Initials>
<AffiliationInfo>
<Affiliation>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Halliwell</LastName>
<ForeName>Barry</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore. bchbh@nus.edu.sg.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore. bchbh@nus.edu.sg.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Neurobiol</MedlineTA>
<NlmUniqueID>8900963</NlmUniqueID>
<ISSNLinking>0893-7648</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000962">Antimalarials</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000962" MajorTopicYN="N">Antimalarials</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001812" MajorTopicYN="N">Blood-Brain Barrier</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
<QualifierName UI="Q000150" MajorTopicYN="Y">complications</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009422" MajorTopicYN="N">Nervous System Diseases</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000209" MajorTopicYN="Y">etiology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="Y">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016896" MajorTopicYN="N">Treatment Outcome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Aminoacridine</Keyword>
<Keyword MajorTopicYN="N">Antimalarials</Keyword>
<Keyword MajorTopicYN="N">Aortic body</Keyword>
<Keyword MajorTopicYN="N">Arachidonic acid</Keyword>
<Keyword MajorTopicYN="N">Brain endothelial cells</Keyword>
<Keyword MajorTopicYN="N">COVID</Keyword>
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Carotid body</Keyword>
<Keyword MajorTopicYN="N">Chloroquine</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Cytosolic phospholipase A2</Keyword>
<Keyword MajorTopicYN="N">DMT1</Keyword>
<Keyword MajorTopicYN="N">Eicosanoids</Keyword>
<Keyword MajorTopicYN="N">Free radical damage</Keyword>
<Keyword MajorTopicYN="N">Glossopharyngeal nerve</Keyword>
<Keyword MajorTopicYN="N">Hippocampus</Keyword>
<Keyword MajorTopicYN="N">Hydroxychloroquine</Keyword>
<Keyword MajorTopicYN="N">Inflammation</Keyword>
<Keyword MajorTopicYN="N">Iron transport</Keyword>
<Keyword MajorTopicYN="N">Lysosomes</Keyword>
<Keyword MajorTopicYN="N">Microcirculation</Keyword>
<Keyword MajorTopicYN="N">Microglia</Keyword>
<Keyword MajorTopicYN="N">Microvessels</Keyword>
<Keyword MajorTopicYN="N">Neuroinflammation</Keyword>
<Keyword MajorTopicYN="N">Nucleus of the tractus solitarius</Keyword>
<Keyword MajorTopicYN="N">Oxidative stress</Keyword>
<Keyword MajorTopicYN="N">Quinacrine</Keyword>
<Keyword MajorTopicYN="N">Respiratory centre</Keyword>
<Keyword MajorTopicYN="N">SARS</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">Secretory phospholipase A2</Keyword>
<Keyword MajorTopicYN="N">Statins</Keyword>
<Keyword MajorTopicYN="N">Stroke</Keyword>
<Keyword MajorTopicYN="N">TNF-α</Keyword>
<Keyword MajorTopicYN="N">Vagus nerve</Keyword>
<Keyword MajorTopicYN="N">Vascular dementia</Keyword>
<Keyword MajorTopicYN="N">cPLA2</Keyword>
<Keyword MajorTopicYN="N">sPLA2 IID</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>12</Hour>
<Minute>16</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32897518</ArticleId>
<ArticleId IdType="doi">10.1007/s12035-020-02093-z</ArticleId>
<ArticleId IdType="pii">10.1007/s12035-020-02093-z</ArticleId>
<ArticleId IdType="pmc">PMC7477069</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Toxicol Appl Pharmacol. 2008 Nov 1;232(3):396-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18708082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Jan 30;92(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29167338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci Res. 2001 Dec 15;66(6):1198-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11746453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2020 Sep;88(3):626-630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32533727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Med Chem. 2011 Jul;46(7):2917-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21531054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gen Pharmacol. 1998 Mar;30(3):357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9510087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Mar 13;367(6483):1260-1263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32075877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2020 Aug 4;32(2):176-187.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32592657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 27;278(26):24153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2020 May 14;369:m1849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32409561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jun;92(6):552-555</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32104915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Neurosci. 2020 May 6;11(9):1200-1203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32283006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2020;76(1):3-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32538857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2020 Sep;143:105007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32622086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurosci Lett. 2009 May 22;455(3):183-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2001 Aug 11;358(9280):455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11513909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2017 May 12;120(10):1622-1631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28381400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neuroinflammation. 2015 Oct 31;12:199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26520095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2020 Aug 4;95(5):224-225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32444492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Rev. 2006 Sep;58(3):591-620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2020 Mar;30(3):269-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32020029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2003 Oct;183(2):449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14552885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2013 Jul;34(22):5439-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23639527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2020 Jun;43(6):355-357</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32359765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2020 Jun;26(6):842-844</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32398875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 2;395(10234):1417-1418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32325026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Nov 15;1524(1):57-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiology. 2020 Aug;296(2):E119-E120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32228363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Neurol. 2020 Aug 1;77(8):1028-1029</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32469400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Aug;82(15):7264-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2013 Aug 15;245:179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23597830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Neurol. 1998 Sep;55(9):1248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9740120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2019 Dec;189:107849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31655042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1972 Jan 7;235(5332):50-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4550396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heart. 2017 Nov;103(22):1788-1794</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28490621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Jun 20;395(10241):e109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32505222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2003;120(1):21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12849737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2005 Aug 1;202(3):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autoimmun Rev. 2020 Jul;19(7):102573</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32387470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 1999 Apr;72(4):1574-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10098863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Apoptosis. 2017 May;22(5):696-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28315174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1998 Aug 28;1393(2-3):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9748607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2015 Oct 19;212(11):1851-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26392224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2020 May 11;12(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32403242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood Cells Mol Dis. 1998 Jun;24(2):199-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9642100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Forensic Sci Int. 1994 Sep 6;68(1):29-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7959478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Med. 2020 May 11;9(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32403217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Haematol. 2020 Sep;105(3):357-359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32324284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Neurosci. 2020 Apr 1;11(7):995-998</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32167747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13734-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21825120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Physiol. 1984 Aug;120(2):225-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6746749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Neurosci. 2015 Jun 17;6(6):814-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25891385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Travel Med Infect Dis. 2020 Jul - Aug;36:101642</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32220634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2017 Oct;13:336-344</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28633109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Clin Pharmacol Ther. 1999 Jan;37(1):58-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10027484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fertil Steril. 1982 Dec;38(6):735-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7141014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2020 Jun;41(6):363-382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32291112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jul;92(7):699-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32314810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2020 Nov;177(21):4873-4886</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32562276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets Cardiovasc Haematol Disord. 2004 Mar;4(1):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15058300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Jul;96:615-617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32502659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rhinology. 2020 Jun 1;58(3):299-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32240279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 1994 May;16(5):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7815918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Membr. 2012;70:169-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23177986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Biol. 2020 May 18;12(4):322-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32236562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Rev Med Pharmacol Sci. 2020 Apr;24(8):4539-4547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32373993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Alzheimers Dis. 2005 Nov;8(2):183-200; discussion 209-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16308487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Stroke Cerebrovasc Dis. 2020 Aug;29(8):104941</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32689643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 19;8(9):e72783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24069158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Behav Immun. 2020 Jul;87:95-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32353523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1263-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2003 Oct 15;8(20):927-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14554156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2010 Oct;51(10):4942-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20554621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2003 Feb;148(4):521-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Sci. 2003 Feb;92(2):360-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12532385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2003 Dec;87(6):1471-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lipids. 2000 Mar;35(3):333-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10783011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurochem. 2019 Feb;148(4):499-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30520043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Microbes New Infect. 2020 Jun 06;38:100709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">33088574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Parasitol. 1993 Aug;79(4):565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8331477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Neurosci. 2020 Aug 5;11(15):2137-2144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32639711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2020 Jun 10;27(6):883-890.e2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32407669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Coll Cardiol. 2020 Jun 16;75(23):2950-2973</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32311448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Neurol. 2020 Aug 1;77(8):1018-1027</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32469387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem. 2008 Jul 15;16(14):6737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2020 Aug;158:104904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32430286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2020 May;17(5):541-543</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32203186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2020 Jul 22;107(2):219-233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32640192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 1989 Jun 27-Jul 24;88(1-2):77-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2779545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Mar;11(3):407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18785817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 2020 Sep;51(9):2649-2655</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32755456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Oct 8;28(41):10330-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Database (Oxford). 2018 Jan 1;2018:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29617745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Immunol. 2020 May;214:108393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32222466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Oct 29;251(3):775-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9790986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA Neurol. 2020 Jun 1;77(6):683-690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32275288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2020 Jul;56(1):105949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32205204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Brain Res. 2001 Jun;138(4):500-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11465749</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Singapour</li>
</country>
<orgName>
<li>Université nationale de Singapour</li>
</orgName>
</list>
<tree>
<country name="Singapour">
<noRegion>
<name sortKey="Ong, Wei Yi" sort="Ong, Wei Yi" uniqKey="Ong W" first="Wei-Yi" last="Ong">Wei-Yi Ong</name>
</noRegion>
<name sortKey="Cheah, Irwin Kee Mun" sort="Cheah, Irwin Kee Mun" uniqKey="Cheah I" first="Irwin Kee-Mun" last="Cheah">Irwin Kee-Mun Cheah</name>
<name sortKey="Cheah, Irwin Kee Mun" sort="Cheah, Irwin Kee Mun" uniqKey="Cheah I" first="Irwin Kee-Mun" last="Cheah">Irwin Kee-Mun Cheah</name>
<name sortKey="Go, Mei Lin" sort="Go, Mei Lin" uniqKey="Go M" first="Mei-Lin" last="Go">Mei-Lin Go</name>
<name sortKey="Halliwell, Barry" sort="Halliwell, Barry" uniqKey="Halliwell B" first="Barry" last="Halliwell">Barry Halliwell</name>
<name sortKey="Halliwell, Barry" sort="Halliwell, Barry" uniqKey="Halliwell B" first="Barry" last="Halliwell">Barry Halliwell</name>
<name sortKey="Ong, Wei Yi" sort="Ong, Wei Yi" uniqKey="Ong W" first="Wei-Yi" last="Ong">Wei-Yi Ong</name>
<name sortKey="Wang, De Yun" sort="Wang, De Yun" uniqKey="Wang D" first="De-Yun" last="Wang">De-Yun Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000530 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000530 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32897518
   |texte=   Effects of Antimalarial Drugs on Neuroinflammation-Potential Use for Treatment of COVID-19-Related Neurologic Complications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32897518" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021